Il calcolo di funzioni di matrici nell'ambito della risoluzione numerica di problemi stiff

Supervisor
Paolo Novati
Date and time
Tuesday, April 1, 2008 at 4:15 PM - Inizio alle 16:30, Caffè e biscotti alle 16:15.
Place
Ca' Vignal - Piramide, Floor 0, Hall Verde
Programme Director
Stefano De Marchi
External reference
Publication date
February 10, 2008
Department
 

Summary

Il crescente interesse nella costruzione di integratori esponenziali è motivato dalla ricerca di metodi numerici efficenti per la risoluzione di equazioni differenziali ordinarie di tipo stiff. Questi integratori si basano sul calcolo della funzione esponenziale (o di funzioni ad essa correlata) della Jacobiana o di una sua approssimazione all'interno del metodo. In questo senso, l'idea è di riversare sul calcolo delle funzioni di matrice lo stiffness del problema, il cui trattamento rappresenta la principale difficoltà computazionale dei metodi classici di risoluzione (Runge-Kutta, Multistep).
 

A livello pratico tuttavia, il calcolo di funzioni di matrici presenta non poche problematiche riguardanti soprettutto il costo computazionale e pertanto non tutti gli studiosi del settore sono concordi nel sostenere che questi integratori costituiscano un'efficace alternativa ai metodi classici. Inoltre pochissimi codici efficienti sono stati prodotti e di conseguenza pochissimi confronti attendibili sono stati fatti con i codici esistenti che implementano i metodi classici.
 

In questo contesto verrà presentata una tipologia di integratori basati sui metodi di Rosenbrock-Wanner, che richiedono ad ogni passo il calcolo di un certo numero di funzioni di matrice. Inoltre verrà presentata una tecnica definita Restricted Denominator Rational Approximation che si è rivelata particolarmente adatta a questi calcoli nell'ambito dei metodi proposti. Infine verranno trattate alcune problematiche di carattere computazionale e presentati alcuni esempi numerici.
 






© 2002 - 2021  Verona University
Via dell'Artigliere 8, 37129 Verona  |  P. I.V.A. 01541040232  |  C. FISCALE 93009870234